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Abstract— An improved calculation of ferrite core loss for nonsinu-
soidal waveforms separates a flux trajectory into major and minor loops
via a new recursive algorithm. It is highly accurate and outperforms two
previous methods for our measured data. The only characteristics of the
material required are the standard Steinmetz-equation parameters.

I. I NTRODUCTION

FOR computer-aided design (CAD) of magnetic power de-
vices, including electric machines, transformers, induc-

tors, and other static reactors, an accurate prediction of loss in
magnetic materials is essential. A widely used calculation is a
power law equation [1], [2]

Pv(t) = kfαB̂β (1)

whereB̂ is the peak flux amplitude,Pv(t) is the time-average
power loss per unit volume, andf is the frequency of sinu-
soidal excitation, andk, α, andβ are constants found by curve
fitting. A similar equation, but without the frequency depen-
dence, was proposed by Steinmetz in 1892 [3], and so (1) is
often referred to as the Steinmetz equation. Unfortunately, the
Steinmetz equation, as well as the data provided by manufac-
turers of magnetic materials, is based only on sinusoidal exci-
tation, whereas switching power converters and, increasingly,
electric machines, can have very different waveforms. These
nonsinusoidal waveforms result in different losses [4], [5], [6].
DC bias can also significantly affect loss [7], [8], [9]. A bet-
ter method of determining loss, accurate for a wider variety
of waveforms, is needed. Our work is motivated primarily by
applications to MnZn power ferrite materials. However, the
results may be useful for other materials as well.

More detailed models, based on physical phenomena pro-
ducing loss, have been studied [10], [11], [12], [13], [14],
[15], [16], [17], [18], [12], [13]. However, especially for
ferrites, there is not yet a clear consensus on a practical
physically-based model that properly includes dynamic and
nonlinear effects [6]. Furthermore, the physically-based mod-
els that appear most promising require additional characteriza-
tion well beyond what is typically available in manufacturers’
data sheets, and it is unlikely that design engineers will typ-
ically undertake the necessary measurements and parameter
extraction.

This work was supported in part by the United States Department of Energy
under grant DE-FC36-01GO1106.

Two recent models use the Steinmetz equation parameters,
but extend the calculation to address arbitrary waveforms: the
“modified Steinmetz equation” (MSE) [4], [5], [19], and the
“generalized Steinmetz equation” (GSE) [6]. Another similar
model was developed in [20]. In [6] the GSE is introduced to
overcome anomalies in the MSE. As is discussed in Section I-
A, the model introduced in [20] also exhibits anomalies. In
[6], the MSE and GSE are compared with experimental data,
and while both provide a vastly better approximation than the
basic Steinmetz equation (1), and the GSE avoids some prob-
lems exhibited in the MSE, each has significant error in at least
one region.

A careful examination of the data in [6] shows that where
the GSE model deviates from the measured data is very
close to the point at which the flux waveform ceases to be
monotonic–that is, where it starts to contain minor hysteresis
loops. Thus, in order to improve on those results, we have
studied the possibility of separating the flux waveform into
major and minor loops, and calculating the loss separately for
the major loop and for each minor loop. This loop separa-
tion does not directly improve the performance of the GSE,
because the GSE is based on a hypothesis about instantaneous
power dissipation that is unaffected by whether a section of the
waveform is considered as part of a minor loop or not. Thus, in
order to make use of separated loops to improve the accuracy
of the GSE, the calculation of loss for each separate loop must
be something different from the original GSE. We find that an
expression similar to the GSE, but based on peak-to-peak am-
plitude of the major or minor loop under consideration, works
well when used with separation of minor loops.

In Section II-A we describe the modification of the GSE
to make it depend on peak-to-peak amplitude. In Section II-
B, we describe the recursive algorithm we developed that can
separate any number of nested or separate minor loops and
sub-loops. In Section III, we compare the results of the im-
proved model with experimental data.

A. Criteria for a Self-Consistent Loss Model

Without a strong theoretical basis for a nonlinear, dynamic
loss model, a vast number of formulations are possible. For-
tunately, many possibilities can be dismissed as implausible
even without experimental measurements. To define several
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criteria that must be met for a plausible solution we propose
two axioms:

Axiom 1: The loss must be a continuous function of param-
eters describing the waveform.

Axiom 2: If there are two equivalent descriptions of a wave-
form, calculations of loss based on either must give the same
result.

In [6], the MSE [5] is shown to violate these axioms. The
period of the waveform is important in the calculation of the
MSE. But a slight, unimportant change of parameters of a
waveform can result in a jump in the period. For example,
the flux waveformB(t) = B0(ε sin(ωt) + sin(10ωt)) jumps
by a factor of ten asε goes from zero to infinitesimally greater
than zero. Thus, the loss is a discontinuous function of a con-
tinuous change of a parameter of the waveform. The relation
between the two axioms can be seen by considering the case
in which ε = 0. The waveform may be described as periodic
with periodT = 2π

ω or T = 2π
10ω . This may seem to be a

purely academic point, but it leads directly to the discontinu-
ity problem. As shown in [6], it is also related to the mismatch
between the MSE and measured data.

The model proposed in [20] calculates loss for a piecewise
linear (PWL) flux waveform as

Pv = kw

∑

i

{
|Bi+1 −Bi|m [2(ti+1 − ti)]

−n ti+1 − ti
T

}

(2)
whereBi are the flux values at timesti, m, n, andkw are
constants that [20] recommends finding from measurements
with squarewave excitation, andPv is the time-average power
dissipation per unit volume.

This violates Axiom 2 in that if a segment of the PWL wave-
form is divided into two consecutive segments (with equal
slope), (2) gives a different result, as

2
∣∣∣∣
1
2

∣∣∣∣
m [

1
2

]−n 1
2
6= 1 (3)

unlessn = m.
One could stipulate that no single segment be divided, in an

attempt to circumvent Axiom 2, but as with the MSE, the vio-
lation of Axiom 2 is associated with a violation of Axiom 1 as
well. An infinitesimal change in slope at the midpoint of a seg-
ment would necessitate separation into two segments, hence
causing a jump in the calculated loss.

Although the intent of [20] was only to model PWL wave-
forms, not more general waveforms, consideration of how it
would apply clarifies the difficulties it poses. If one were to
calculate loss for a smoothly curving waveform, one would
hope to be able to derive better and better results by approx-
imating it with more and more time segments. However, as
demonstrated by (3), each time more segments are used, the
loss changes. Withm > n, as is typically the case, the result
decreases as a finer approximation is used, with the loss ap-
proaching zero in the limit of an infinite number of segments.

The consideration of these Axioms 1 and 2 allows one to
see that the MSE [5] and the model in [20] cannot be expected
to work well for truly general consideration of many different
possible waveforms; the problems with the MSE were con-
firmed experimentally in [5]. Thus, in developing improved
models, it is important to heed the axioms.

II. I MPROVED LOSSMODEL

A. Modifying the GSE

The GSE was developed on the basis of a general hypothesis
for instantaneous core loss, [21]

Pv(t) = Pd(
dB

dt
,B) (4)

wherePd is an unknown power dissipation function. This for-
mulation is not well justified: Assuming thatPd is a single-
valued function ofdB/dt and B oversimplifies the actual
physical phenomena that, in general, depend on the time-
history of the flux waveform as well as on its instantaneous
value and derivative [11], [22]. Thus, with such a formulation,
it should not be surprising if there are situations in which it is
not accurate. Also note that splitting the flux trajectory into
major and minor loops should not make any difference for any
loss calculation that can be expressed as (4).

In [6], it is shown that (4) is consistent with the Steinmetz
equation for sinusoidal waveforms if the particular loss func-
tion used is

Pv(t) = k1

∣∣∣∣
dB

dt

∣∣∣∣
α

|B(t)|β−α (5)

Then time-average loss for an arbitrary flux waveform is cal-
culated by the following expression (the GSE):

Pv =
1
T

∫ T

0

k1

∣∣∣∣
dB

dt

∣∣∣∣
α

|B(t)|β−αdt (6)

where

k1 =
k

(2π)α−1
∫ 2π

0
| cos θ|α| sin θ|β−αdθ

. (7)

Comparison of the results of (6) with experimental results
[6] suggests that the potential problem noted above—the de-
pendence of the instantaneous loss in (5) on only the instan-
taneous parameters—is in fact a problem in practice. An-
other possible choice that would be equally consistent with the
Steinmetz equation for sinusoidal waveforms, but that would
not depend only on instantaneous parameters, would be

Pv(t) = ki

∣∣∣∣
dB

dt

∣∣∣∣
α

(∆B)β−α (8)

where∆B is the peak-to-peak flux density. The expression
for time-average loss then becomes

Pv =
1
T

∫ T

0

ki

∣∣∣∣
dB

dt

∣∣∣∣
α

(∆B)β−αdt (9)
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Fig. 1. Flow chart for separation of minor loops. Detail of the step in which
minor loops are separated from the rising portion of the loop is shown in
Fig. 2.

where

ki =
k

(2π)α−1
∫ 2π

0
| cos θ|α2β−αdθ

. (10)

If, at each point in the waveform,∆B is taken as the peak-to-
peak amplitude of the major or minor loop that contains that
point, this formulation can then calculate loss appropriately in
the presence of minor loops.

B. Algorithm for Separation of Minor Loops

In order to apply (9) separately to each major or minor loop
of a waveform in an automated CAD system, it is necessary to
have an algorithm capable of splitting an arbitrary waveform
in a major loop and one or more minor loops. The algorithm
should be able to handle sub-loops within minor loops, sub-
sub-loops within those sub-loops, and so on, for any number
of nested levels.

We have developed such an algorithm and implemented it as
a MATLAB function. A single cycle of a periodic piece-wise-
linear (PWL) flux-density waveform is given as the input. This
could correspond to a true PWL flux-density waveform, as is
common in power-converter magnetics, or it could be a dis-
cretized approximation to a different type of waveform such
as a sinusoid.

The sequence of steps followed in the algorithm is dia-
grammed in Figs. 1 and 2. First, the waveform is partitioned
into two sections. The “rising” section is the portion between
the lowest point in the waveform and the highest point. It may
include both positive- and negative-slope portions, but it is,
on average, rising. The “falling” section is the portion of the

Store first element of rising in Majorloop(i)
i = i + 1

Create a new minor loop vector Minorloopn
n = n + 1

Store the next element of rising in Minorloopn (j)
j = j + 1 

Is next element � last 
element of Majorloop? 

Store the next element of rising in Majorloop(i)
i = i + 1

More elements?

Done
N

No
(still in minor loop)

Y (return to major loop)

Y

Start with vector rising: rising portion of loop
i = j = n = 0

Slope?
dB/dt > 0

dB/dt < 0

Fig. 2. Flow chart for a function used in separation of minor loops. This
function removes the minor loops from the rising portion of the waveform.

waveform between the peak value and the minimum value.
The periodic nature of the waveform is considered in locating
these sections; typically at least one of the sections “wraps” to
include a portion from of the tail of the input waveform pre-
ceding a portion from the start of the waveform. If more than
one point in the waveform is equal to the maximum value or
the minimum value, any one of the equal values can be cho-
sen as the dividing point between the “rising” and “falling”
portions.

The process of splitting the minor loops contained in the
rising portion of the waveform is diagrammed in Fig. 2. The
values of flux density from this portion are placed, one-by-one,
into a vector,MajorLoop, until the start of a minor loop is de-
tected via a change in the slope of the waveform from positive
to negative. After a minor loop starts, the flux-density values
are stored as elements of a new vector in what will become
a collection of minor-loop vectors. Values are stored in the
first minor-loop vector until the flux-density value rises back
to the same value where it started decreasing (the point where
the minor loop closes). NowMajorLoop stores a portion of
the major loop and we have one additional vectorMinorloop1

storing the first minor loop. More values are stored again in
MajorLoop. If a new minor loop is encountered, values for
that minor loop are stored in another minor-loop vector, and
our collection of minor loops grows. The process continues
until the end of the “rising” portion. NowMajorLoop has
the entire rising portion of the major loop (which is now in
fact monotonically rising) and we have all the minor loops ex-
tracted from it in separate vectors,Minorloopn. These minor
loops may contain sub-loops, which have to be separated also,
in the recursive process described later.

For the “falling” part of the waveform, the same process
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is used, except with the conditions all based on the opposite
slopes. At the end of this process we have the complete major
loop inMajorLoopand each of the minor loops (with any sub-
loops still embedded) in a separate vector.

Each of the minor loops is then checked for sub-loops. If
a sub-loop is detected, then that minor loop is processed by
a recursive call of the original function. Thus, any sub-loops
present in the minor loops are eliminated. The recursive ap-
proach can handle any number of levels of nested sub-sub-
loops.

C. Loss Calculation

With a set of major and minor loops, the loss of each one
can be calculated according to (9). The total loss is then found
by a weighted average, weighting the contribution of each by
the fraction of the total period it occupies. That is,

Ptot =
∑

i

Pi
Ti

T
(11)

wherePi is the loss given by (9) for major or minor loopi,
Ti is the period of loopi, andT is the total period. This is
equivalent to summing the energy loss that occurs during each
loop (PiTi) and dividing the total energy loss over one cycle
by the total period to obtain average power loss.

The calculation of (9) in general involves performing an in-
tegral. This may be done numerically by any of many standard
methods; in some cases it is also possible to do this analyti-
cally.

A particularly common type of flux waveform in power
electronics is piecewise linear (PWL). For PWL waveforms,
the integral in (9) may be split into one piece for each linear
segment

Pv =
ki(∆B)β−α

T

∫ T

0

∣∣∣∣
dB

dt

∣∣∣∣
α

dt

=
(ki∆B)β−α

T

∑
m

∫ tm+1

tm

∣∣∣∣
dB

dt

∣∣∣∣
α

dt (12)

whereBm is the flux density at timetm, and∆B is, as before,
the peak-to-peak flux density of the overall loop. For each
linear time segment, the slope is a constantdB

dt = Bm+1−Bm

tm+1−tm
,

and the result of integration is simply

Pv =
ki(∆B)β−α

T

∑
m

∣∣∣∣
Bm+1 −Bm

tm+1 − tm

∣∣∣∣
α

(tm+1 − tm) (13)

This result may be used directly for typical PWL waveforms
found in many power electronics applications. In the case of
other waveforms, such as sinusoidal waveforms, a PWL ap-
proximation of the waveform may be used with (13) to conve-
niently approximate (6).

We conclude that a loss calculation routine, applicable to
PWL flux waveforms, or to PWL approximations of other
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Fig. 3. An example flux waveform given by (14), with the two minor loops
shown as dashed lines. This plot is for the parameterc set toc = 0.3.

waveforms, could be broadly useful and can be easily devel-
oped from the above analysis. First, the waveform is split into
major and minor loops as described in Section II-B. Next, the
loss for each major or minor loop is calculated using (13). Fi-
nally, the loss from each loop is combined using (11). We have
implemented such a program in MATLAB [23] and will make
it freely available [24].

III. C OMPARISON WITH EXPERIMENTAL

MEASUREMENTS

Core loss measurements were performed using two wind-
ings of six turns each on a toroidal core of 3C85 MnZn power
ferrite (Philips), driven by a power amplifier. Current and volt-
age probes were used to make measurements that were pro-
cessed by a digital oscilloscope to calculate power loss. De-
tails of the measurement system are described in [6]. To exam-
ine the effect of a non-sinusoidal waveform with and without
minor loops, we used a flux waveform

B(t) = A [(1− c) sin 2πft + c sin(3 · 2πft)] . (14)

wherec is a variable parameter corresponding to the fraction
of third harmonic,A is 200 mT, andf = 20 kHz. Forc ≤ 0.1,
(14) has only one major loop. But forc > 0.1 it has minor
loops at the top and bottom of the major loop, as shown in
Fig. 3.

Fig. 4 compares the results of the experiment to the MSE,
to the GSE, and to our new method using (9) and accounting
for minor loops—the improved GSE, labelled iGSE. We see
that all fit well forc < 0.1 where there is only one major loop,
and even up to almostc = 0.2 where the minor loops become
significant and the GSE starts to deviate significantly. The
MSE continues to match up to aboutc = 0.4 but then does
not match well at all for high values ofc. The iGSE, how-
ever, models the actual behavior accurately through the whole
range. At high values ofc, above aboutc = 0.7, the GSE and
the iGSE again converge, as the waveform again approaches a
single sinusoid, and the minor loops are of less importance.
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Fig. 4. Comparison of loss predicted by three models to experimental data
for a flux waveform composed of two harmonically related sinusoids (14).
The two sinusoids are at 20 kHz and 60 kHz, with a maximum amplitude
of 200 mT.

Thus, we see that new method corrects the deviation that the
GSE has from the experimental data, and is more consistently
accurate than any of the previous methods.

IV. SIMPLIFIED APPLICATION

Although our primary objective was to create a model that
could be used in a high-performance CAD program, we also
recognize that many engineers will wish to calculate core loss
by hand, or in their own programs, which in some cases will
not be easily linked to our programs. For example, some may
wish to use a simple spreadsheet program. For the case of
PWL waveforms with no minor loops the loss may be calcu-
lated by a simple formula, requiring no integration (13). This
can also be expressed in terms of the winding voltagesVj , as-
sumed constant during each time periodj of length∆tj , as

Pv =
ki(∆B)β−α

T

∑

j

∣∣∣∣
Vj

NAc

∣∣∣∣
α

(∆tj), (15)

whereN is the number of turns andAc is the cross sectional
core area. Note that∆B is the peak-to-peak flux of the loop
under consideration, not just of one segment of a piecewise-
linear waveform.

The only remaining complication in applying this for simple
waveforms is the need to numerically integrate

∫ 2π

0
| cos θ|αdθ

to find the constantki. To simply this operation, we have per-
formed the numerical integration for a range of values ofα
from 0.5 to 3, and performed a curve fit to the results. We find
that, to within 0.15%,

∫ 2π

0

| cos θ|αdθ = 4
(

0.2761 +
1.7061

α + 1.354

)
. (16)

Thus,ki can be expressed in terms of the Steinmetz parame-
ters as

ki =
k

2β+1πα−1
(
0.2761 + 1.7061

α+1.354

) . (17)

We conclude that with no minor loops, and piecewise linear
flux waveforms, all that is needed for a simple calculation of
core loss is (17) and (15).

V. L IMITATIONS AND FUTURE WORK

The improved GSE (iGSE) with separation of minor loops
overcomes problems with previous methods and matches our
experimental data very well. Only the Steinmetz parameters
are needed; no additional measurements or curve fitting are
needed. However, this is subject to several important limita-
tions. Further work is needed to overcome these limitations.

The best-fit Steinmetz parameters are known to vary with
frequency [25], [6]. For waveforms with a harmonic content
over a wide frequency range, choosing the appropriate param-
eters can be problematic, as discussed in greater detail for the
GSE in [6]. Although more complex alternatives to the Stein-
metz equation have been proposed to account for this param-
eter variation [25], it is not clear how this can be done in the
iGSE.

Ferrite core loss is known to vary with dc bias [7], [8], [9],
whereas the iGSE predicts loss that is completely independent
of dc bias. The GSE loss predictions do depend on dc bias, but
only by accident, not by design, and dc sensitivity of the GSE
appears to be significantly greater than that of actual materials.
Further experimental work is needed before an accurate model
of dc bias effects can be developed.

Because there are an infinite number of possible nonsinu-
soidal waveforms, testing the iGSE for all of them is not possi-
ble. The iGSE was developed from the Steinmetz parameters–
a curve fit just to sinusoidal waveforms–and then generalized
to nonsinusoidal waveforms, for which it was shown to work
well. Because it was developed in this way, we have confi-
dence that it will work reasonably well for any nonsinusoidal
waveform, within the limitations of frequency range and dc
bias discussed above. If instead, we had merely provided a
curve fit to measured nonsinusoidal data, there would be lit-
tle reason to expect that the curve fit would work well for any
type of waveform that we had not measured. But the iGSE has
demonstrated its ability to work for waveforms other than the
sinusoids from which the parameters were generated, so it is
not unreasonable to expect it to work for other nonsinusoidal
waveforms. However, it is impossible to conclusively prove
that the iGSE will work for any waveform without an infi-
nite amount of data. Even though it can never be conclusively
proven to be universally applicable, we would have more con-
fidence in it with more experimental data.

As the theory of loss mechanisms in ferrite advances, it may
eventually become possible to do practical loss estimation us-
ing a model with a more direct physical basis. One promising
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approach that should be studied for its implications on loss
with nonsinusoidal core loss is the fractal models discussed in
[26], [27].

This work presently predicts only the area of the hysteresis
loop, not its shape. For dynamic circuit simulation, a dynamic
hysteresis model capable of simulating the full nonlinear dy-
namic behavior of the material is needed. We have not yet
investigated developing dynamic models consistent with the
iGSE loss model.

VI. CONCLUSION

We calculate core loss by separation of a flux trajectory into
major and minor loops and the application of a loss calcula-
tion similar to that in [6], but with loss depending on peak-to-
peak flux density instead of instantaneous flux density. The re-
sult matches experimental data well. It is the only method we
know of that can accurately calculate loss with any waveform,
without requiring extra characterization of material properties
beyond the parameters for the Steinmetz equation.
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